
Pure Function Synthesis in the OutSystems Platform

Catarina Coelho

INESC-ID

Instituto Superior Técnico

Universidade de Lisboa

Portugal

catarina.a.coelho@tecnico.ulisboa.pt

ABSTRACT

Program synthesis consists in automatically generating a

program from a specification used to define user intent. The

OutSystems platform is a low-code development platform

which allows the development of applications through a

graphical user interface. The OutSystems platform allows

business logic to be implemented through action flows,

which can be used to perform several complex and

recurrent operations, such as data wrangling operations. In

order to do this, pure functions can be used within

OutSystems language expressions to perform these

operations. Pure functions are a type of functions that have

no side-effects and their returned value is determined by its

inputs. However, writing this type of functions might

become a tedious and repetitive task due to its recurrence,

and might even be a difficult task for less experienced

users. In this work we present PUFS, a pure function

synthesizer that given a set of input-output examples, as a

specification of the function’s desired behavior, synthesizes

a pure function. Our solution consists of a combination

between program sketches as a representation of a partial

function and enumeration-based search alongside

Satisfiability Modulo Theories (SMT) to fill the sketches in

order to obtain the complete function. The proposed

solution was evaluated on a set of real-world examples,

showing promising results for recurrent and common pure

functions.

Author Keywords

Program Synthesis, Satisfiability Modulo Theories,

Programming-by-Example

INTRODUCTION
OutSystems platform is a low-code development platform

which allows the development of applications through a

graphical user interface. Its main goal is to provide an

easier and faster experience in development and integration

of web and mobile applications. The OutSystems platform

allows the implementation of business logic using actions

which can be used later in other action flows. An action

flow is a set of operations represented by nodes, such as

access to a database, assignment of variables, among others,

that implements the logic of the application. Unlike regular

action flows, action flows can be used within OutSystems

language expressions, making them a special case of these

type of flows, thus very useful to perform complex data

transformations that are recurrent throughout the

application. Pure functions are a type of functions that have

no side-effects, where the return value is only determined

by its input values, as in functions in traditional

programming languages. Although the platform provides an

easier experience that abstracts the user from the code

writing task, it also relies on the use of action flows to

prevent the user from having to repeat the same operations.

Since the implementation of pure functions in these flows is

a frequent element in every application, it makes sense to

develop an automation of this process. Code generation has

been one of the main recurrent research fields throughout

the years, its relevance has become higher and led to the

appearance of new research fields and techniques, one of

them being program synthesis. Program synthesis consists

in automatically generating a program that satisfies a

specification provided by the user to express its intent, i.e.,

the desired behavior of the program. It becomes clear that

this technique can be quite useful in the context of our

problem, since we want to be able to facilitate the

generation of these functions in the platform by some sort

of automation, given that these are recurrent tasks

throughout the platform. One of the main properties of pure

functions is that their output is conditioned by the input.

Hence, we can see that the inputs have a great influence in

the behavior of these functions. As such, we have chosen an

approach based on input-output examples as specification.

However, pure functions in the action flows are not code

fragments, and so they do not have the structure of typical

functions as in other programming languages. These

functions are represented as a flow of several nodes in

which each node has an operation to be executed within the

function. Hence, another reason that implies that synthesis

might turn this process easier, since its representation is not

as intuitive to automate as other code representations. Due

to the regularity of performing these tasks, as well as the

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:

• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.

• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.

• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement

assuming it is single-spaced in Times New Roman 8-point font. Please do

not change or modify the size of this text box.

Each submission will be assigned a DOI string to be included here.

characteristics that this type of functions has, it makes sense

to automatize this process using synthesis techniques.

2. FUNDAMENTAL CONCEPTS

This chapter provides a brief description of the fundamental

concepts required in order to fully understand the rest of

this document. Some concepts about Program Synthesis in

section 2.1 are presented,

such as its definition, dimensions and main challenges.

Then, this chapter introduces and provides some insights on

Satisfiability Modulo Theories in section 2.2.

2.1 Program Synthesis

Given a specification used to express the user intent,

program synthesis is the task of automatically generating a

program that satisfies that specification. Different types of

specification include input-output examples [1, 2, 6, 9, 20,

24, 31], logical formulas [14, 16] and natural language [2,

5, 31].

In program synthesis there are three main dimensions, as

illustrated in Figure 2.1: expressing user intent, program

space and search techniques, which are described in more

detail in sections 2.1.1, 2.1.2 and 2.1.3, respectively.

2.1.1 User Intent

As mentioned previously, to perform program synthesis

there must be a way for the user to express his intent. The

user intent indicates the desired behavior of the program to

be generated by the synthesizer.

Specification Given an input x and an output value y, a

specification Ω is the description of the user’s intent, such

that Ω(x, y) is True if and only if y is the desired output

value for x.

Despite all the progresses in program synthesis solutions,

expressing user intent still remains a significant challenge.

The first approaches on program synthesis, such as

deductive synthesis, required the user intent to be expressed

using a complete formal specification, which in most cases

is harder than writing the program itself.

Using a complete specification might become as

challenging as the underlying programming task.

However, when not specific enough, there might be more

than one program that satisfies the provided specification

and end up with a program that is not the desired one, due

to the ambiguity of the specification.

The goal is to find an approach that allows finding the

desired solution without the need for a very complex

specification, i.e., find a balance between the completeness

and ease of formulation of the specification.

2.1.2 Program Space

Once the specifications needed to express the user intent are

provided, the synthesizer is now able to perform a search

over the program space in order to find the desired

program.

Figure 2.1: Program synthesis dimensions

Program Space is the space containing the set of all

programs that can be written using a given programming

language.

The program space for a given programming language is

infinite, which leads to another challenge: the dimension of

the program space. In order to tackle this challenge, one of

the many possible approaches is to restrict the program

space by imposing an upper bound on the number of lines

or instructions that a program can have. However, the size

of this restricted program space grows exponentially as the

upper bound grows or as more components are added to the

language.

A possible approach to reduce the restricted program space

is making use of a pruning technique, such as domain-

specific heuristics, restricting the program space using some

program complexity metrics such as size or restrict the

programs language using a Domain-Specific Language

(DSL).

Domain-Specific Language defines both the syntax and

the semantics of the language in which the synthesized

programs are written, providing the appropriate notions and

abstractions for a particular domain or problem.

2.1.3 Search Techniques

In order to find the intended program, one needs to search

the program space for a program that satisfies the

specification. The specification and the knowledge about

the context of the problem are used in order to guide the

search process. To do so, there are four main search

techniques in program synthesis, from which we will be

describing one in more detail in this section.

Enumerative Given a specification and a Domain Specific

Language (DSL), the enumerative based approach consists

in enumerating the programs that are in the search space

using some heuristic to define the order in which they are

enumerated, which can be program size, complexity, among

others. Then, for each program, it checks if it satisfies or

not the specification. In Figure 2.2 we can see an

illustration of the enumeration process.

The enumerator is responsible for enumerating the

candidate programs. These candidate programs are sent to a

verifier which checks the consistency of the program

according to the specification provided by the user. If the

program is consistent, then it is returned to the user;

otherwise, the enumerator must provide a new program to

be verified. Although this sounds very simple, an

enumerative search approach may not scale up. Hence, it is

Figure 2.2 : Enumerative search program synthesis

important to have some pruning or a good ranking

technique, in order to perform the search of the program

space in a more efficient and effective way.

3. RELATED WORK

In this chapter we discuss previous work related to this

project. We focus in three main areas of program synthesis,

namely inductive synthesis (3.1), with more emphasis on

programming-by-example, program sketches (3.2) and

enumeration-based program synthesis (3.3).

3.1 Inductive Synthesis

As described in section 2.1.1, expressing user intent might

reveal to be a challenging task. Deductive synthesis

approaches require the user intent to be provided as a

complete formal specification, which in most cases is as

demanding as writing the program itself. The process of

generating a program from high-level formal specifications

is called formal synthesis.

The need to make formal synthesis methods simpler led to

the appearance of new inductive synthesis approaches

based on inductive specifications such as input-output

examples, like the FlashMeta framework for inductive

program synthesis [23], which allows synthesizer

developers to generate efficient synthesizers from a DSL

definition.

3.1.1 Programming-by-Example

Programming-by-Example (PBE) is a sub-field of program

synthesis that focuses on input-output example-based

specifications. One of PBE’s main goals is automating

certain classes of programming tasks, which has proven

extremely useful for end-users since it is easier to provide

examples rather than a formal specification of the

constraints, but also very useful to developers since it

provides a tool for automating repetitive and tedious

programming tasks in the form of informal specifications.

This approach is used in a wide range of domains, such as

automating manipulations in spreadsheets like FlashFill

[10], which allows users to quickly perform repetitive string

manipulations in Excel by providing a very small set of

examples of the expected behavior, without the need to

write complex macros. Other examples include automating

data preparation tasks [2, 7, 9, 17], regular expression

synthesis [31], and SQL queries [30, 32].

Input-output examples enjoy a set of unique properties

which sets PBE apart as a separate subfield of program

synthesis. These properties are ease of use and ambiguity of

the specification. As mentioned before, this approach

provides the user a simpler and easier way to specify user

intent for a given program, but they are also simpler to

explain and verify, which is the reason why this is an ideal

approach for users without programming background.

But, alongside the ease of use, comes the ambiguity of the

provided solutions. PBE is highly dependent on the quality

of the provided examples, increasing the likelihood of

obtaining several programs that satisfy the input-output

examples but do not accurately capture the user intent,

which may lead to an increasing program space. Which

leads us to some of the main program synthesis challenges:

ambiguity resolution, since we do not want to just find any

program that satisfies the input-output examples

but the intended one.

3.1.1 Ambiguity Resolution
One of the main characteristics in PBE, aside from the ease

of use, is the ambiguity. Given a set of input-output

examples, there might exist more than one program that is

consistent with the examples, but does not satisfy the user

intent, which is why examples are considered an under-

specification. Therefore, it is important to establish a

criteria for choosing a program from a given pool of

candidates that satisfy the specification. To do so, two main

solutions have been proposed [12]: Ranking [13, 23, 26]

and Active Learning [11, 18].

Ranking Given a set of programs that are consistent with

the examples, this approach performs a ranking of the

programs according to their likelihood of corresponding to

the user’s intent and assigns a score to each one. In the end,

the chosen programs correspond to the ones with the

highest score.

Active Learning Is a common approach when the

synthesizer finds more than one program that is consistent

with the examples. Given two candidate programs,

distinguishing inputs consist of using an input that produces

a different output for each program, then ask the user which

produced output is the correct one and discard the other

program. Once the user selects the intended program the

new input-output pair is added to the examples set. This

technique is based on interaction with the user, in order to

disambiguate between 2 candidate programs.

3.2 Program Sketches

One approach that has become very popular in program

synthesis is the use of partial programs, also known as

program sketches, to write code automatically [9, 20], data

wrangling tasks [2], facilitate the use of software libraries

[25], training neural networks [19] and solving component

based synthesis problems [7, 24].

3.2.1 Sketch-based Program Synthesis

Solar-Lezama introduced an approach which allows the

user to provide its specifications through a partial program

referred to as sketch [27, 29].

A sketch expresses the high-level structure of an

implementation but has holes which represent the low-level

details. The key idea is to create an abstraction from the

source code that clearly defines the semantics but not the

syntax, this is, the sketch abstracts out names and

Figure 3.1: Sketch-based program synthesis

operations from a program, but keeps the program’s

structure, the order in which it executes methods, types of

arguments and its return values. This approach is know as

programming with sketches [28].

In program synthesis, we have already seen that the use of

examples as a specification can be very useful. Among the

various types of programming-by-examples approaches we

have seen, sketches can be used to guide the structure of the

intended implementation.

Also, it allows the user to focus on the algorithmic

properties of the implementation rather than the low-level

details. Solar-Lezama et al. [28] show that this approach

improves the productivity and performance of programming

tasks. The sketch-based synthesis process can be split in

two stages: sketch generation and sketch completion, as

illustrated in Figure 3.1. The first process consists in

generating a sketch, using an automated sketch generation

technique [8], in which the synthesizer enumerates the

sketches according to some complexity metric, such as the

sketch size, and a given DSL. Followed by the filling of the

holes, with the use of a synthesizer to fill each hole with an

according expression in order to generate a complete

program, which corresponds to the sketch completion stage.

This process is repeated until a valid solution is found

according to the given specification.

3.3 Enumeration-based Program Synthesis

There exist several approaches to program synthesis, one of

the most common being enumeration-based search. This

technique consists of performing a search over the space of

all candidate programs that can be generated from a given

DSL [2, 9, 17, 21, 31]. The enumeration prioritizes

programs according to some heuristic and returns the first

program that satisfies the specification provided by the

user. This technique is frequently used in many state-of-the-

art synthesizers that also rely on logical deduction [2, 17,

22], where the space of candidate programs is encoded

using either Boolean Satisfiability (SAT) or Satisfiability

Modulo Theories (SMT).

As shown in Figure 2.2 the enumeration-based technique

has two main components: an enumerator and a decider.

The enumerator enumerates all the possible programs for a

DSL given as input. For each enumerated program the

decider will evaluate if it satisfies the specification provided

by the user. For the particular case of PBE, this evaluation

performed by the decider is done by executing the

enumerated program using the input examples and checking

if the output matches the corresponding output examples. If

the output does not match the expected one we consider that

program to be infeasible.

4. PURE FUNCTION SYNTHESIS

This chapter presents PUFS, a PBE-based Pure Function

Synthesizer, developed using an enumeration-based

approach, both for enumerating programs as well as

sketches. We start by providing a brief introduction to the

OutSystems platform, as well as a description of the

problem (Section 4.1), followed by the description of the

enumeration-based sketch generation approach (Section

4.2) and the sketch completion approach (Section 4.3) as

well as all the techniques used in its components.

4.1 Problem Formulation

This thesis was developed within the context of the

OutSystems platform. OutSystems is a low-code

development platform which provides a graphical user

interface for the development of mobile and web

applications, while allowing easy integration with other

existing systems and the use of traditional textual

programming (e.g. JavaScript, SQL) when needed. Its main

goal is to enable an easier and faster development

experience of enterprise-level applications.

In the OutSystems platform, business logic is defined using

action flows. Pure functions are one type of action flow that

produces an output given a set of inputs. These functions

are characterized for having no side-effects and can be used

within OutSystems expressions, which makes them useful

for performing complex data transformations that are

recurrent throughout the application.

An OutSystems expression is composed by operands and

operators. The operands can be a literal (e.g. strings,

numbers, Boolean values, etc.), any element available in the

scope of the current expression, such as local variables, or

function calls, or sub-expressions. The operators can be of

type numeric, logic and Boolean, among others. However,

in this work we are focusing on synthesizing pure functions

that use built-in types such as Integer, Decimal, Text and

Boolean, and built-in functions such as Math, Numeric and

Text.

We are mainly focused in synthesizing pure functions, but

for the scope of this thesis we are focused on the ones with

just conditional expressions in form of If statements and

assignment expressions without loops. The assignment

expressions assign a value to a given variable. On the other

hand, If statements consist of an expression to be evaluated

in order to condition the control-flow of the function.

The goal of this thesis is to synthesize this type of functions

using program synthesis, from an input-output example-

based specification. Since pure functions return an output

from a given set of inputs, these represent an appropriate

candidate to apply this technique. These input-output

examples represent the expected behavior of a flow.

In order to simplify the synthesis task sketches are used.

We follow a two-stage approach consisting of sketch

generation and sketch completion, further described.

The user provides an input file containing both the

specification, in the form of input-output examples. The

Figure 4.1: Pure Function Synthesizer.

Figure 4.2: Partial flow example.

structure of the input file and assemble of the DSL is

further described in section 4.3.

In order to simplify the synthesis task sketches are used.

We follow a two-stage approach consisting of sketch

generation and sketch completion, further described in

section 4.2 and section 4.3 respectively. During the sketch

generation phase we generate the partial flows to be

completed with the during the sketch completion phase, in

order to get a complete flow corresponding to a program.

These partial flows consist of flows with holes in place of

the expressions of each Assign and If node. A flow is

considered correct if, once complete, it returns the expected

output for the respective input for all the input-output pairs

given as specification. If a valid solution is not found, i.e., it

is not valid according to the input-output examples, then the

synthesizer tries to find a solution using another sketch and

so on.

The overview of the architecture of our framework is

illustrated in figure 4.1.

4.2 Sketch Generation

The sketch generation consists in generating a sketch of a

flow, i.e., a flow with holes in place of the assignment and

If node expressions as illustrated in figure 4.2.

This generation process consists of a enumerative approach

that enumerates several sketches up to a pre-specified size.

The size of a flow corresponds to the number of nodes in

that flow.

In our approach, graphs are used as a representation of the

flows, since a flow is akin to the control-flow graph of an

application. Given that, we consider a flow to be a graph.

Also, the graphs allow us to have a representation that

gathers all the necessary information to enumerate the

sketches, such as the neighborhood of each node, which

expression is associated to the node, among others.

Therefore, in this section, when we refer to a flow, we refer

to its structure as a graph. We consider the size of a flow to

be the number of nodes of the corresponding graph. Figure

4.3 shows the sketches that would be generated for a fixed

size of 5. Given the desired size of the flow, the enumerator

Figure 4.3: Enumeration of sketches given the desired

size of the flow.

Figure 4.4: Overview of the PUFS synthesis process.

follows a recursive approach conditioned by the current size

of the flow and the desired final size. We consider 5

possibilities, that correspond to when there are 0, 1, 2, 3 or

more nodes away from reaching the desired flow size.

At each step of the recursion we check if there are If and

non-If free nodes. Free nodes correspond to nodes which

have no outgoing edges. We consider non-If free nodes to

be nodes of type Start or Assign that have no outgoing

edges and If free nodes to be If nodes with at most one

outgoing edge or none, since If nodes must have 2 outgoing

edges corresponding to the ”True” and ”False” edges.

At each new recursive step we check how many nodes are

missing in the current graph in order to achieve the desired

size. Then, based on the size of the current graph and the

corresponding free nodes we add the possible nodes among

Assign, If and End nodes. At the end of each step a new

recursion begins using the updated graphs.

4.3 Sketch Completion

Once the sketch is generated, its holes must be filled in

order to obtain a complete flow that corresponds to a

correct and valid pure function. Within the sketch

completion process we have two main components: the K-

Tree Enumerator and the Decider. This process is illustrated

in figure 4.4.
4.3.1 K-Trees Enumeration

Once the input file, with the input-output examples, along

with the DSL are provided, the enumeration of the

candidate programs takes place. The enumeration of the

Figure 4.5: An example AST.

Figure 4.6: Example AST of figure as a k-tree.

candidate programs is guided by a sketch, i.e., the sketch is

the flow’s graph with holes instead of expressions.

In order to perform the enumeration of candidate programs,

we need to use a structure that is capable of representing

every possible program in the DSL. Programs are often

represented using their Abstract Syntax Tree (AST)

representation. An Abstract Syntax Tree (AST) is a tree

representation of the syntactic structure of a program,

where each internal node represents an operator, and the

children represent the respective operands. For instance, the

AST shown in figure 4.5 corresponds to the program

add(mul(input1; input2); input2).

K-trees are a popular representation used in enumeration-

based program synthesis due to its ability of representing

every possible program for a given DSL. Therefore, k-trees

are the representation used in PUFS. A k-tree is a tree of

depth d, where every internal node has exactly k children

and every leaf node is at depth d. For the current DSL

supported by PUFS, the maximum arity among all DSL

constructs is 3, meaning every k-tree will have 3 children,

as shown in Figure 4.6.

In order to enumerate the possible programs using k-trees,

the synthesizer encodes the trees as an SMT formula. A

complete program can be extracted from a model of the

SMT formula. A model that satisfies that formula

represents the assignment of a symbol of the given DSL to

each node in the trees. Within the possible tree encoding

approaches, we have selected the line-based encoding. In

the line-based encoding, a program is represented using a

Figure 4.7: Enumeration of k-trees for a given sketch

with two holes to fill.

sequence of trees of depth 1, where each tree represents one

operation of the program, as in an imperative language.

PUFS uses an adaptation of the line-based encoding

presented in SQUARES. A program representing a flow

with Assign nodes only can be seen as a sequence of

operations, therefore, we want to fill each hole using a k-

tree rather than one single k-tree to represent the whole

program, as shown in figure 4.7. However, when it comes

to flows with If nodes that does not apply, and for that same

reason we use an adaptation of the encoding instead of the

original one. Furthermore, the trees are enumerated in

increasing depth until a solution is found or until a timeout

is reached.

In the following sections we describe the variables and

constraints used to encode the line-based.

4.3.2 Line-based Encoding with Conditionals

When considering flows with Assign nodes only, the

previous encoding, described in section 3.3, would be

enough, since a program, with assignment expressions only,

can be seen as program written in an imperative language

where each line would be the expression associated to each

Assign node. However, in the presence of If nodes, the

structure of our programs is not so straight forward.

Therefore, in order to synthesize flows with conditional

expressions we have implemented the following

constraints.

Recall that D is the DSL, Prod(D) the set of production

rules in D and Term(D) the set of terminal symbols in D.

Furthermore, Types(D) represents the set of types used in D

and Type(s) the type of symbol s є Prod(D) U Term(D). If s

є Prod(D), then Type(s) corresponds to the return type of

production rule s.

Consider Σ the set of symbols used in the program. Besides

the production rules and terminal symbols, there is one

additional symbol ret for each line in the program. Let Ret

= {reti : 1≤ i≤ n} represent the set of return symbols in the

program, then Σ = Prod(D) U Term(D) U Ret.

Furthermore, each symbol is assigned a unique positive

identifier. Let id : Σ→ N0 be a one-to-one mapping function

that maps each symbol in Σ to a unique positive identifier

and tid : Types(D) → N0 be a one-to-one mapping function

that maps each symbol type to a unique positive identifier.

Finally, since some operations in the DSL have a smaller

arity than k, the empty symbol є is introduced, so that every

leaf node has an assigned symbol. We assume id(є) = 0.

Encoding variables. Consider a sketch with n holes to fill,

where the maximum arity of the operators used in the

expressions is k, and each hole will be filled using a line,

we have the following variables:

• _ O = {opi : 1 ≤ i ≤ n} : each variable opi

represents the production rule used in line i.

• _ T = {ti : 1 ≤ i ≤ n} : each variable ti represents

the return type of the expression in line i.

• _ A = {aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} :: each variable aij

represents the symbol corresponding to argument j

in line i.

To ensure the enumerated programs are well-typed we need

to add the following constraints.

Operations constraints. The operations in each line must

be production rules.

If a node i corresponds to an If node, then the line used to

fill that node’s hole must be a production rule for which the

return type is Boolean. Let BooleanProd(D) be the set of

such production rules that appear in the DSL D, and

HoleType(i) the node type of hole i.

The return type of each line is the return type of its

production rule.

Given a sketch with more than one hole to fill, the

arguments of an operation i used in a hole must be either

terminal symbols or return symbols from previous holes.

Arguments. Given a sketch with more than one hole to fill,

the arguments of an operation i used in a hole must be

either terminal symbols or return symbols from previous

holes.

However, if the sketch to be completed has If nodes, there

will be more than a single execution path, so, the results of

an operation can only be used within the following

operations of the same execution branch. Therefore, we

have the following constraint. Let PreviousHoles(i) be the

set of lines used in previous holes from the same execution

path as node i, excluding lines that are used to fill If nodes.

The arguments of an operation i must have the same types

as the parameters of the production rule used in the

operation. Let Type(p, j) be the type of parameter j of

production rule p, where p є Prod(D). If j > arity(p) then

T(p, j) = є. Hence, there are the following constraints when

a return symbol is used as an argument of an operation:

A terminal symbol t є Term(D) cannot be used as argument

j of an operation i if it does not have the correct type:

The arity of an operation i can be smaller than k, in that

case, the empty symbol є is assigned to the arguments

above the productions arity.

Output. Let Type(out) be the type of the program’s output

and Pout є Prod(D) be the subset of production rules which

return type equal to Type(out), i.e., Pout = {p є Prod(D) :

Type(p) = Type(out)}. Given that a flow can have multiple

nodes pointing to an End node, there is more than one

possible output result. Consider L the set of all lines

corresponding to nodes that point to an End node. Since the

last line of a program corresponds to the program’s output,

the operation of each one of the lines in L must be one the

productions in Pout.

Input. Let I be the set of symbols provided as input by the

user. Each input must be used at least once:

Lines once or more times. We are interested in

enumerating programs where the result of an operation can

be used in the following operations 1 or more times. Hence,

we have the following constraint.

4.3.1 Decider

Once the sketch is filled with the corresponding expressions

in each node, the decider evaluates if the resulting program

satisfies the specification. To perform this evaluation, we

Table 5.1: Comparison of number of instances solved

for the different timeout values.

Figure 5.1: Number of instances solved throughout time

for a timeout of 60 seconds.

developed a flow interpreter, which takes a graph that

represents a flow and interprets the resulting program using

the input values to obtain the corresponding outputs of that

program. If, for every input, the program returns the

corresponding output from the specification the decider

considers that a solution was found. Otherwise, a new

sketch is generated to be filled by the synthesizer. This

process is repeated until a solution is found or until a time

limit is reached.

5. EVALUATION

The goal is to evaluate how many pure functions PUFS is

able to synthesize and how quickly. We are also interested

in evaluating how the quality of the examples affects the

performance of the synthesizer in terms of run time and

program quality. Besides performing an evaluation based

on properties of the examples, we also evaluate if providing

additional information, such as constants to be used in the

program, has a significant impact in the performance.

We developed PUFS on top of the TRINITY [17] synthesis

framework. The synthesizer is implemented in Python 3.6

and it uses the Z3 SMT solver [4] with theory of Linear

Integer Arithmetic to solve the SMT formulas generated

during the synthesis process. The results presented in this

section ere obtained using an Intel(R) Core(TM) i5-7300U

CPU @ 2.60GHz, with 16GB of RAM, running Ubuntu

18.04 LTS, with time limit of 300 seconds.

5.1 Experimental Results

We want to evaluate the impact of the number and quality

of the input-output examples on the performance of our

synthesizer, in terms of runtime and program quality.

Additionally, we evaluate the impact of providing constants

Figure 5.2: Number of instances solved throughout time

for a timeout of 120 seconds.

along with the input-output examples. For each instance we

ran the synthesizer with 5 input-output examples.

For instances in which the solution is expected to use

constants we provided the corresponding constants in the

specification file along with the input-output examples.

These constants consist of integer, decimal and string

values. We ran the synthesizer for instances with constants

and with no constants provided. This is due to the fact that

the synthesizer is not able to synthesize programs with

constants for now, so solutions that require constants would

not be found using the present configuration.

Table 5.1 shows the results of both approaches in terms of

the number of instances solved and limit time considered.

We consider an instance solved it the synthesized program

satisfies the input-output examples. However, even though

it is considered solved it does not mean it is correct, i.e. it

might not match the intended solution. Matching the user

intent means that the solution must satisfy the specification

as well as capturing the user intent (this verification is

performed manually).

5.2 Discussion

From the presented results, we can verify that as the

complexity of the program increases so does the time to

find solution. As the enumeration process is done in an

ascending order of size of the sketch, the bigger the sketch

we want to complete the longer it will take to complete it

and find a solution that satisfies the specifications. We need

to take into account that the bigger the size of the program

we are synthesizing, the longer it will take for the sketch

completion stage to be completed, due to the fact that the

number of holes we wish to fill increases the number of

expressions to be synthesized.

However, from the comparison between the different

timeout limits and the number of instances that the

synthesizer was able to solve during each of those time

intervals, we can verify that the difference in the time given

does not have a significant impact on the number of

instances solved, especially when using constants.

Regarding the use of constants, from plot 5.1 and table 5.1,

we can verify that the use of constants has a significant

impact in the number of solved instances, which is more

evident in instances solved under 1 minute. This impact

would be expected due to the fact that the synthesizer does

not enumerate candidate programs containing constants,

unless these are provided by the user. However, the

addition of constants also increases the time it takes to find

a solution, due to the fact that more candidate programs are

enumerated. Which would explain the results for the

timeout of 2 minutes, illustrated in 5.2, where we verify that

the number of solved instances without constants is almost

the same as when providing the constants. For this

particular case, it is important to evaluate if the trade-off

between the additional time spent enumerating more

programs, compensates by finding a solution in a

reasonable time.

Another aspect to have in consideration is the number of

solutions that do not correspond to the intended one. The

use of constants, especially when used in conditional

expressions to limit a range of values, can lead to solutions

that do not match the expected one, if the provided input-

output examples do not cover the limits of that range.

6. CONCLUSIONS & FUTURE WORK

In this thesis, we tackle the problem of synthesizing pure

functions from examples in the OutSystems platform. We

focus on functions that manipulate integers, decimals, text

and Booleans. The OutSystems platform main goal is to

provide an easier and faster experience in development and

integration of web and mobile applications. This platform

gives users, with no programming background, a tool that

allows them to develop an application with no need for

specific knowledge, and also provides a faster and

automated approach to users with more specialized

knowledge. Therefore, it is in our interest to provide a

simple approach for the user to be able to generate the pure

functions with only a small number of examples in just one

click. These types of functions come across very often, in

the form of data wrangling tasks, among others. Having

such a repetitive type of task might become tedious and add

more complexity to the overall tasks, which leads to a need

of automating this type of functions. In this dissertation we

presented a novel approach to synthesize pure functions in

the form of flows in the OutSystems platform, from a set of

input-output examples. We survey the state of the art in

program synthesis and implemented PUFS, a PBE-based

pure function synthesizer. The synthesizer employs the use

of sketches as the underlying structure of our programs and

enumerative search, where SMT is used to search the

program space. We tested PUFS in a set of real-world

examples of pure functions developed in the OutSystems

platform, from which the results of our experiments

revealed we are able to synthesize 33% of the benchmarks

within less than a minute. However, the results also

revealed that in a significant number of examples we were

not able to find a solution within a limited amount of time

due to the dimension of the program space or due to an

incomplete specification. Given the experimental results,

we believe the current solution could benefit from some

pruning techniques, in order to reduce the search space and

possibly overcome the time limitation to find a solution. It

would also be interesting to use a ranking technique as an

ambiguity resolution technique in order to guide the

synthesizer into finding a program that is more likely to

lead to a solution that satisfies both the specification and

corresponds to the user intent. Moreover, it is important to

explore if this approach scales if the DSL was to be

extended, given that it would be interesting to extend the

current DSL to support more data types and more functions.

Besides the DSL it would be particularly interesting to

support other type of nodes that allow other types of

operations.

REFERENCES

[1] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin,

and D. Tarlow. Deepcoder: Learning to write programs. In

5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings, 2017. URL https://openreview.net/

forum?id=ByldLrqlx.

[2] Y. Chen, R. Martins, and Y. Feng. Maximal multi-layer

specification synthesis. In M. Dumas, D. Pfahl, S. Apel, and

A. Russo, editors, Proceedings of the ACM Joint Meeting

on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,

2019, pages 602–612. ACM, 2019. ISBN 978-1-4503-

5572-8. doi: 10.1145/3338906.3338951. URL

https://dl.acm.org/citation.cfm?id=3338906.

[3] A. Cohen and M. T. Vechev, editors. Proceedings of the

38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017,

Barcelona, Spain, June 18-23, 2017, 2017. ACM. ISBN

978-1-4503-4988-8. doi: 10.1145/3062341.

[4] L. M. de Moura and N. Bjørner. Z3: an efficient SMT

solver. In C. R. Ramakrishnan and J. Rehof, editors, Tools

and Algorithms for the Construction and Analysis of

Systems, 14th International Conference, TACAS 2008,

Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings, volume

4963 of Lecture Notes in Computer Science, pages 337–

340. Springer, 2008. doi: 10.1007/978-3-540-78800-3n 24.

URL https://doi.org/10.1007/978-3-540-78800-3_24.

[5] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A.

Karkare, M. Marron, S. R, and S. Roy. Program synthesis

using natural language. In L. K. Dillon, W. Visser, and L.

A. Williams, editors, Proceedings of the 38th International

Conference on Software Engineering, ICSE 2016, Austin,

TX, USA, May 14-22, 2016, pages 345–356. ACM, 2016.

doi: 10.1145/2884781.2884786.URL

https://doi.org/10.1145/2884781.2884786.

[6] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.

Mohamed, and P. Kohli. Robustfill: Neural program

learning under noisy I/O. In D. Precup and Y. W. Teh,

editors, Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia,

6-11 August 2017, volume 70 of Proceedings of Machine

Learning Research, pages 990–998. PMLR, 2017. URL

http://proceedings.mlr.press/v70/devlin17a.html.

[7] Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and S.

Chaudhuri. Component-based synthesis of table

consolidation and transformation tasks from examples. In

Cohen and Vechev [3], pages 422–436. ISBN 978-1-4503-

4988-8. doi: 10.1145/3062341.3062351.

[8] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W.

Reps. Component-based synthesis for complex apis. In G.

Castagna and A. D. Gordon, editors, Proceedings of the

44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, pages 599–612. ACM, 2017. ISBN

978-1-4503-4660-3. URL http://dl.acm.org/citation.cfm?

id=3009851.

[9] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program

synthesis using conflict-driven learning. In J. S. Foster and

D. Grossman, editors, Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2018, Philadelphia, PA, USA,

June 18-22, 2018, pages 420–435. ACM, 2018. doi:

10.1145/3192366.3192382.

[10] S. Gulwani. Automating string processing in

spreadsheets using input-output examples. In T. Ball and

M. Sagiv, editors, Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2011, Austin, TX, USA,

January 26-28, 2011, pages 317–330. ACM, 2011. ISBN

978-1-4503-0490-0. doi: 10.1145/1926385.1926423. URL

http://dl.acm.org/citation.cfm?id=1926385.

[11] S. Gulwani. Synthesis from examples: Interaction

models and algorithms. In A. Voronkov, V. Negru, T. Ida,

T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie, editors,

14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, SYNASC 2012,

Timisoara, Romania, September 26-29, 2012, pages 8–14.

IEEE Computer Society, 2012.

doi:10.1109/SYNASC.2012.69. URL

https://doi.org/10.1109/SYNASC.2012.69.

[12] S. Gulwani. Programming by examples: applications,

algorithms, and ambiguity resolution. In W. Vanhoof and

B. Pientka, editors, Proceedings of the 19th International

Symposium on Principles and Practice of Declarative

Programming, Namur, Belgium, October 09 - 11, 2017,

page 2. ACM, 2017. ISBN 978-1-4503-5291-8. doi:

10.1145/3131851.3131853. URL

https://doi.org/10.1145/3131851.3131853.

[13] S. Gulwani and P. Jain. Programming by examples: PL

meets ML. In B. E. Chang, editor, Programming Languages

and Systems - 15th Asian Symposium, APLAS 2017,

Suzhou, China, November 27-29, 2017, Proceedings,

volume 10695 of Lecture Notes in Computer Science,

pages 3–20. Springer, 2017. doi: 10.1007/978-3-319-

71237-6n 1. URL https://doi.org/10.1007/978-3-319-71237-

6_1.

[14] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan.

Synthesis of loop-free programs. In M. W. Hall and D. A.

Padua, editors, Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,

2011, pages 62–73. ACM, 2011. ISBN 978-1-4503-0663-8.

doi: 10.1145/1993498.1993506.

[15] S. Gulwani, O. Polozov, and R. Singh. Program

synthesis. Foundations and Trends in Programming

Languages, 4(1-2):1–119, 2017. doi: 10.1561/2500000010.

[16] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.

Oracle-guided component-based program synthesis. In J.

Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors,

Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 1, ICSE

2010, Cape Town, South Africa, 1-8 May 2010, pages 215–

224. ACM, 2010. ISBN 978-1-60558-719-6.

[17] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig.

Trinity: An extensible synthesis framework for data

science. PVLDB, 12(12):1914–1917, 2019. doi:

10.14778/3352063.3352098. URL

http://www.vldb.org/pvldb/vol12/p1914-martins.pdf.

[18] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron,

O. Polozov, R. Singh, B. G. Zorn, and S. Gulwani. User

interaction models for disambiguation in programming by

example. In C. Latulipe, B. Hartmann, and T. Grossman,

editors, Proceedings of the 28th Annual ACM Symposium

on User Interface Software & Technology, UIST 2015,

Charlotte, NC, USA, November 8-11, 2015, pages 291–

301. ACM, 2015. doi: 10.1145/2807442.2807459. URL

https://doi.org/10.1145/2807442.2807459.

[19] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine.

Neural sketch learning for conditional program generation.

In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings.

OpenReview.net, 2018. URL

https://openreview.net/forum?id=HkfXMz-Ab.

[20] M. I. Nye, L. B. Hewitt, J. B. Tenenbaum, and A.

Solar-Lezama. Learning to infer program sketches. In K.

Chaudhuri and R. Salakhutdinov, editors, Proceedings of

the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA,

volume 97 of Proceedings of Machine Learning Research,

pages 4861–4870. PMLR, 2019. URL

http://proceedings.mlr.press/v97/nye19a.html.

[21] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins,

and V. M. Manquinho. Encodings for enumeration-based

program synthesis. In T. Schiex and S. de Givry, editors,

Principles and Practice of Constraint Programming - 25th

International Conference, CP 2019, Stamford, CT, USA,

September 30 - October 4, 2019, Proceedings, volume

11802 of Lecture Notes in Computer Science, pages 583–

599. Springer, 2019. doi: 10.1007/978-3-030-30048-7n 34.

URL https://doi.org/10.1007/978-3-030-30048-7_34.

http://proceedings.mlr.press/v70/devlin17a.html

[22] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins,

and V. M. Manquinho. SQUARES : A SQL synthesizer

using query reverse engineering. Proc. VLDB Endow.,

13(12):2853–2856, 2020. URL

http://www.vldb.org/pvldb/vol13/p2853-orvalho.pdf.

[23] O. Polozov and S. Gulwani. Flashmeta: a framework

for inductive program synthesis. In J. Aldrich and P.

Eugster, editors, Proceedings of the 2015 ACM SIGPLAN

International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015,

part of SPLASH 2015, Pittsburgh, PA, USA, October 25-

30, 2015, pages 107–126. ACM, 2015. ISBN 978-1-4503-

3689-5. URL http://dl.acm.org/citation.cfm?id=2814270.

[24] K. Shi, J. Steinhardt, and P. Liang. Frangel:

Component-based synthesis with control structures. CoRR,

abs/1811.05175, 2018. URL

http://arxiv.org/abs/1811.05175.

[25] K. Shi, J. Steinhardt, and P. Liang. Frangel:

component-based synthesis with control structures.

PACMPL, 3(POPL):73:1–73:29, 2019.

[26] R. Singh and S. Gulwani. Predicting a correct program

in programming by example. In D. Kroening and C. S.

Pasareanu, editors, Computer Aided Verification - 27th

International Conference, CAV 2015, San Francisco, CA,

USA, July 18-24, 2015, Proceedings, Part I, volume 9206

of Lecture Notes in Computer Science, pages 398–414.

Springer, 2015. ISBN 978-3-319-21689-8.

[27] A. Solar-Lezama. Program Synthesis by Sketching.

PhD thesis, Berkeley, CA, USA, 2008. AAI3353225.

[28] A. Solar-Lezama, R. M. Rabbah, R. Bod´ık, and K.

Ebcioglu. Programming by sketching for bitstreaming

programs. In V. Sarkar and M. W. Hall, editors,

Proceedings of the ACM SIGPLAN 2005 Conference on

Programming Language Design and Implementation,

Chicago, IL, USA, June 12-15, 2005, pages 281–294.

ACM, 2005. ISBN 1-59593-056-6. doi:

10.1145/1065010.1065045.

[29] A. Solar-Lezama, L. Tancau, R. Bod´ık, S. A. Seshia,

and V. A. Saraswat. Combinatorial sketching for finite

programs. In J. P. Shen and M. Martonosi, editors,

Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2006, San Jose, CA, USA,

October 21-25, 2006, pages 404–415. ACM, 2006. ISBN

1-59593-451-0.

[30] C. Wang, A. Cheung, and R. Bod´ık. Synthesizing

highly expressive SQL queries from input-output examples.

In Cohen and Vechev [3], pages 452–466. ISBN 978-1-

4503-4988-8. doi: 10.1145/3062341.

[31] X. Ye, Q. Chen, X. Wang, I. Dillig, and G. Durrett.

Sketch-driven regular expression generation from natural

language and examples. Trans. Assoc. Comput. Linguistics,

8:679–694, 2020. URL

https://transacl.org/ojs/index.php/tacl/article/view/2135.

[32] S. Zhang and Y. Sun. Automatically synthesizing SQL

queries from input-output examples. In E. Denney, T.

Bultan, and A. Zeller, editors, 2013 28th IEEE/ACM

International Conference on Automated Software

Engineering, ASE 2013, Silicon Valley, CA, USA,

November 11-15, 2013, pages 224–234. IEEE, 2013. URL

https://ieeexplore.ieee.org/xpl/conhome/6684409/proceedin

g.

http://dl.acm.org/citation.cfm?id=2814270

