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ABSTRACT 

Program synthesis consists in automatically generating a 

program from a specification used to define user intent. The 

OutSystems platform is a low-code development platform 

which allows the development of applications through a 

graphical user interface. The OutSystems platform allows 

business logic to be implemented through action flows, 

which can be used to perform several complex and 

recurrent operations, such as data wrangling operations. In 

order to do this, pure functions can be used within 

OutSystems language expressions to perform these 

operations. Pure functions are a type of functions that have 

no side-effects and their returned value is determined by its 

inputs. However, writing this type of functions might 

become a tedious and repetitive task due to its recurrence, 

and might even be a difficult task for less experienced 

users. In this work we present PUFS, a pure function 

synthesizer that given a set of input-output examples, as a 

specification of the function’s desired behavior, synthesizes 

a pure function. Our solution consists of a combination 

between program sketches as a representation of a partial 

function and enumeration-based search alongside 

Satisfiability Modulo Theories (SMT) to fill the sketches in 

order to obtain the complete function. The proposed 

solution was evaluated on a set of real-world examples, 

showing promising results for recurrent and common pure 

functions.  
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INTRODUCTION 
OutSystems platform is a low-code development platform 

which allows the development of applications through a 

graphical user interface. Its main goal is to provide an 

easier and faster experience in development and integration 

of web and mobile applications. The OutSystems platform 

allows the implementation of business logic using actions 

which can be used later in other action flows. An action 

flow is a set of operations represented by nodes, such as 

access to a database, assignment of variables, among others, 

that implements the logic of the application. Unlike regular 

action flows, action flows can be used within OutSystems 

language expressions, making them a special case of these 

type of flows, thus very useful to perform complex data 

transformations that are recurrent throughout the 

application. Pure functions are a type of functions that have 

no side-effects, where the return value is only determined 

by its input values, as in functions in traditional 

programming languages. Although the platform provides an 

easier experience that abstracts the user from the code 

writing task, it also relies on the use of action flows to 

prevent the user from having to repeat the same operations. 

Since the implementation of pure functions in these flows is 

a frequent element in every application, it makes sense to 

develop an automation of this process. Code generation has 

been one of the main recurrent research fields throughout 

the years, its relevance has become higher and led to the 

appearance of new research fields and techniques, one of 

them being program synthesis. Program synthesis consists 

in automatically generating a program that satisfies a 

specification provided by the user to express its intent, i.e., 

the desired behavior of the program. It becomes clear that 

this technique can be quite useful in the context of our 

problem, since we want to be able to facilitate the 

generation of these functions in the platform by some sort 

of automation, given that these are recurrent tasks 

throughout the platform. One of the main properties of pure 

functions is that their output is conditioned by the input. 

Hence, we can see that the inputs have a great influence in 

the behavior of these functions. As such, we have chosen an 

approach based on input-output examples as specification. 

However, pure functions in the action flows are not code 

fragments, and so they do not have the structure of typical 

functions as in other programming languages. These 

functions are represented as a flow of several nodes in 

which each node has an operation to be executed within the 

function. Hence, another reason that implies that synthesis 

might turn this process easier, since its representation is not 

as intuitive to automate as other code representations. Due 

to the regularity of performing these tasks, as well as the 
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characteristics that this type of functions has, it makes sense 

to automatize this process using synthesis techniques. 

2. FUNDAMENTAL CONCEPTS 

This chapter provides a brief description of the fundamental 

concepts required in order to fully understand the rest of 

this document. Some concepts about Program Synthesis in 

section 2.1 are presented, 

such as its definition, dimensions and main challenges. 

Then, this chapter introduces and provides some insights on 

Satisfiability Modulo Theories in section 2.2. 

2.1 Program Synthesis 

Given a specification used to express the user intent, 

program synthesis is the task of automatically generating a 

program that satisfies that specification. Different types of 

specification include input-output examples [1, 2, 6, 9, 20, 

24, 31], logical formulas [14, 16] and natural language [2, 

5, 31]. 

In program synthesis there are three main dimensions, as 

illustrated in Figure 2.1: expressing user intent, program 

space and search techniques, which are described in more 

detail in sections 2.1.1, 2.1.2 and 2.1.3, respectively. 

2.1.1 User Intent 

As mentioned previously, to perform program synthesis 

there must be a way for the user to express his intent. The 

user intent indicates the desired behavior of the program to 

be generated by the synthesizer. 

Specification Given an input x and an output value y, a 

specification Ω is the description of the user’s intent, such 

that Ω(x, y) is True if and only if y is the desired output 

value for x. 

Despite all the progresses in program synthesis solutions, 

expressing user intent still remains a significant challenge. 

The first approaches on program synthesis, such as 

deductive synthesis, required the user intent to be expressed 

using a complete formal specification, which in most cases 

is harder than writing the program itself. 

Using a complete specification might become as 

challenging as the underlying programming task. 

However, when not specific enough, there might be more 

than one program that satisfies the provided specification 

and end up with a program that is not the desired one, due 

to the ambiguity of the specification. 

The goal is to find an approach that allows finding the 

desired solution without the need for a very complex 

specification, i.e., find a balance between the completeness 

and ease of formulation of the specification. 

2.1.2 Program Space 

Once the specifications needed to express the user intent are 

provided, the synthesizer is now able to perform a search 

over the program space in order to find the desired 

program. 

 

 
Figure 2.1: Program synthesis dimensions 

 

Program Space is the space containing the set of all 

programs that can be written using a given programming 

language. 

The program space for a given programming language is 

infinite, which leads to another challenge: the dimension of 

the program space. In order to tackle this challenge, one of 

the many possible approaches is to restrict the program 

space by imposing an upper bound on the number of lines 

or instructions that a program can have. However, the size 

of this restricted program space grows exponentially as the 

upper bound grows or as more components are added to the 

language. 

A possible approach to reduce the restricted program space 

is making use of a pruning technique, such as domain-

specific heuristics, restricting the program space using some 

program complexity metrics such as size or restrict the 

programs language using a Domain-Specific Language 

(DSL). 

Domain-Specific Language defines both the syntax and 

the semantics of the language in which the synthesized 

programs are written, providing the appropriate notions and 

abstractions for a particular domain or problem. 

2.1.3 Search Techniques 

In order to find the intended program, one needs to search 

the program space for a program that satisfies the 

specification. The specification and the knowledge about 

the context of the problem are used in order to guide the 

search process. To do so, there are four main search 

techniques in program synthesis, from which we will be 

describing one in more detail in this section. 

Enumerative Given a specification and a Domain Specific 

Language (DSL), the enumerative based approach consists 

in enumerating the programs that are in the search space 

using some heuristic to define the order in which they are 

enumerated, which can be program size, complexity, among 

others. Then, for each program, it checks if it satisfies or 

not the specification. In Figure 2.2 we can see an 

illustration of the enumeration process. 

The enumerator is responsible for enumerating the 

candidate programs. These candidate programs are sent to a 

verifier which checks the consistency of the program 

according to the specification provided by the user. If the 

program is consistent, then it is returned to the user; 

otherwise, the enumerator must provide a new program to 

be verified. Although this sounds very simple, an 



enumerative search approach may not scale up. Hence, it is 

 
Figure 2.2 : Enumerative search program synthesis 

 

important to have some pruning or a good ranking 

technique, in order to perform the search of the program 

space in a more efficient and effective way. 

3. RELATED WORK 

In this chapter we discuss previous work related to this 

project. We focus in three main areas of program synthesis, 

namely inductive synthesis (3.1), with more emphasis on 

programming-by-example, program sketches (3.2) and 

enumeration-based program synthesis (3.3). 

3.1 Inductive Synthesis 

As described in section 2.1.1, expressing user intent might 

reveal to be a challenging task. Deductive synthesis 

approaches require the user intent to be provided as a 

complete formal specification, which in most cases is as 

demanding as writing the program itself. The process of 

generating a program from high-level formal specifications 

is called formal synthesis. 

The need to make formal synthesis methods simpler led to 

the appearance of new inductive synthesis approaches 

based on inductive specifications such as input-output 

examples, like the FlashMeta framework for inductive 

program synthesis [23], which allows synthesizer 

developers to generate efficient synthesizers from a DSL 

definition. 

3.1.1 Programming-by-Example 

Programming-by-Example (PBE) is a sub-field of program 

synthesis that focuses on input-output example-based 

specifications. One of PBE’s main goals is automating 

certain classes of programming tasks, which has proven 

extremely useful for end-users since it is easier to provide 

examples rather than a formal specification of the 

constraints, but also very useful to developers since it 

provides a tool for automating repetitive and tedious 

programming tasks in the form of informal specifications. 

This approach is used in a wide range of domains, such as 

automating manipulations in spreadsheets like FlashFill 

[10], which allows users to quickly perform repetitive string 

manipulations in Excel by providing a very small set of 

examples of the expected behavior, without the need to 

write complex macros. Other examples include automating 

data preparation tasks [2, 7, 9, 17], regular expression 

synthesis [31], and SQL queries [30, 32]. 

Input-output examples enjoy a set of unique properties 

which sets PBE apart as a separate subfield of program 

synthesis. These properties are ease of use and ambiguity of 

the specification. As mentioned before, this approach 

provides the user a simpler and easier way to specify user 

intent for a given program, but they are also simpler to 

explain and verify, which is the reason why this is an ideal 

approach for users without programming background. 

But, alongside the ease of use, comes the ambiguity of the 

provided solutions. PBE is highly dependent on the quality 

of the provided examples, increasing the likelihood of 

obtaining several programs that satisfy the input-output 

examples but do not accurately capture the user intent, 

which may lead to an increasing program space. Which 

leads us to some of the main program synthesis challenges: 

ambiguity resolution, since we do not want to just find any 

program that satisfies the input-output examples 

but the intended one. 

3.1.1 Ambiguity Resolution 
One of the main characteristics in PBE, aside from the ease 

of use, is the ambiguity. Given a set of input-output 

examples, there might exist more than one program that is 

consistent with the examples, but does not satisfy the user 

intent, which is why examples are considered an under-

specification. Therefore, it is important to establish a 

criteria for choosing a program from a given pool of 

candidates that satisfy the specification. To do so, two main 

solutions have been proposed [12]: Ranking [13, 23, 26] 

and Active Learning [11, 18]. 

Ranking Given a set of programs that are consistent with 

the examples, this approach performs a ranking of the 

programs according to their likelihood of corresponding to 

the user’s intent and assigns a score to each one. In the end, 

the chosen programs correspond to the ones with the 

highest score. 

Active Learning Is a common approach when the 

synthesizer finds more than one program that is consistent 

with the examples. Given two candidate programs, 

distinguishing inputs consist of using an input that produces 

a different output for each program, then ask the user which 

produced output is the correct one and discard the other 

program. Once the user selects the intended program the 

new input-output pair is added to the examples set. This 

technique is based on interaction with the user, in order to 

disambiguate between 2 candidate programs. 

3.2 Program Sketches 

One approach that has become very popular in program 

synthesis is the use of partial programs, also known as 

program sketches, to write code automatically [9, 20], data 

wrangling tasks [2], facilitate the use of software libraries 

[25], training neural networks [19] and solving component 

based synthesis problems [7, 24]. 

3.2.1 Sketch-based Program Synthesis 

Solar-Lezama introduced an approach which allows the 

user to provide its specifications through a partial program 

referred to as sketch [27, 29]. 

A sketch expresses the high-level structure of an 

implementation but has holes which represent the low-level 

details. The key idea is to create an abstraction from the 

source code that clearly defines the semantics but not the 

syntax, this is, the sketch abstracts out names and 



 
Figure 3.1: Sketch-based program synthesis 

 

operations from a program, but keeps the program’s 

structure, the order in which it executes methods, types of 

arguments and its return values. This approach is know as 

programming with sketches [28]. 

In program synthesis, we have already seen that the use of 

examples as a specification can be very useful. Among the 

various types of programming-by-examples approaches we 

have seen, sketches can be used to guide the structure of the 

intended implementation. 

Also, it allows the user to focus on the algorithmic 

properties of the implementation rather than the low-level 

details. Solar-Lezama et al. [28] show that this approach 

improves the productivity and performance of programming 

tasks. The sketch-based synthesis process can be split in 

two stages: sketch generation and sketch completion, as 

illustrated in Figure 3.1. The first process consists in 

generating a sketch, using an automated sketch generation 

technique [8], in which the synthesizer enumerates the 

sketches according to some complexity metric, such as the 

sketch size, and a given DSL. Followed by the filling of the 

holes, with the use of a synthesizer to fill each hole with an 

according expression in order to generate a complete 

program, which corresponds to the sketch completion stage. 

This process is repeated until a valid solution is found 

according to the given specification. 

3.3 Enumeration-based Program Synthesis 

There exist several approaches to program synthesis, one of 

the most common being enumeration-based search. This 

technique consists of performing a search over the space of 

all candidate programs that can be generated from a given 

DSL [2, 9, 17, 21, 31]. The enumeration prioritizes 

programs according to some heuristic and returns the first 

program that satisfies the specification provided by the 

user. This technique is frequently used in many state-of-the-

art synthesizers that also rely on logical deduction [2, 17, 

22], where the space of candidate programs is encoded 

using either Boolean Satisfiability (SAT) or Satisfiability 

Modulo Theories (SMT). 

As shown in Figure 2.2 the enumeration-based technique 

has two main components: an enumerator and a decider. 

The enumerator enumerates all the possible programs for a 

DSL given as input. For each enumerated program the 

decider will evaluate if it satisfies the specification provided 

by the user. For the particular case of PBE, this evaluation 

performed by the decider is done by executing the 

enumerated program using the input examples and checking 

if the output matches the corresponding output examples. If 

the output does not match the expected one we consider that 

program to be infeasible. 

4. PURE FUNCTION SYNTHESIS 

This chapter presents PUFS, a PBE-based Pure Function 

Synthesizer, developed using an enumeration-based 

approach, both for enumerating programs as well as 

sketches. We start by providing a brief introduction to the 

OutSystems platform, as well as a description of the 

problem (Section 4.1), followed by the description of the 

enumeration-based sketch generation approach (Section 

4.2) and the sketch completion approach (Section 4.3) as 

well as all the techniques used in its components. 

4.1 Problem Formulation 

This thesis was developed within the context of the 

OutSystems platform. OutSystems is a low-code 

development platform which provides a graphical user 

interface for the development of mobile and web 

applications, while allowing easy integration with other 

existing systems and the use of traditional textual 

programming (e.g. JavaScript, SQL) when needed. Its main 

goal is to enable an easier and faster development 

experience of enterprise-level applications.  

In the OutSystems platform, business logic is defined using 

action flows. Pure functions are one type of action flow that 

produces an output given a set of inputs. These functions 

are characterized for having no side-effects and can be used 

within OutSystems expressions, which makes them useful 

for performing complex data transformations that are 

recurrent throughout the application.  

An OutSystems expression is composed by operands and 

operators. The operands can be a literal (e.g. strings, 

numbers, Boolean values, etc.), any element available in the 

scope of the current expression, such as local variables, or 

function calls, or sub-expressions. The operators can be of 

type numeric, logic and Boolean, among others. However, 

in this work we are focusing on synthesizing pure functions 

that use built-in types such as Integer, Decimal, Text and 

Boolean, and built-in functions such as Math, Numeric and 

Text.  

We are mainly focused in synthesizing pure functions, but 

for the scope of this thesis we are focused on the ones with 

just conditional expressions in form of If statements and 

assignment expressions without loops. The assignment 

expressions assign a value to a given variable. On the other 

hand, If statements consist of an expression to be evaluated 

in order to condition the control-flow of the function. 

The goal of this thesis is to synthesize this type of functions 

using program synthesis, from an input-output example-

based specification. Since pure functions return an output 

from a given set of inputs, these represent an appropriate 

candidate to apply this technique. These input-output 

examples represent the expected behavior of a flow. 

In order to simplify the synthesis task sketches are used. 

We follow a two-stage approach consisting of sketch 

generation and sketch completion, further described. 

The user provides an input file containing both the 

specification, in the form of input-output examples. The  



 
Figure 4.1: Pure Function Synthesizer. 

 
Figure 4.2: Partial flow example. 

 

structure of the input file and assemble of the DSL is 

further described in section 4.3. 

In order to simplify the synthesis task sketches are used. 

We follow a two-stage approach consisting of sketch 

generation and sketch completion, further described in 

section 4.2 and section 4.3 respectively. During the sketch 

generation phase we generate the partial flows to be 

completed with the during the sketch completion phase, in 

order to get a complete flow corresponding to a program. 

These partial flows consist of flows with holes in place of 

the expressions of each Assign and If node. A flow is 

considered correct if, once complete, it returns the expected 

output for the respective input for all the input-output pairs 

given as specification. If a valid solution is not found, i.e., it 

is not valid according to the input-output examples, then the 

synthesizer tries to find a solution using another sketch and 

so on. 

The overview of the architecture of our framework is 

illustrated in figure 4.1. 

4.2 Sketch Generation 

The sketch generation consists in generating a sketch of a 

flow, i.e., a flow with holes in place of the assignment and 

If node expressions as illustrated in figure 4.2. 

This generation process consists of a enumerative approach 

that enumerates several sketches up to a pre-specified size. 

The size of a flow corresponds to the number of nodes in 

that flow.  

In our approach, graphs are used as a representation of the 

flows, since a flow is akin to the control-flow graph of an 

application. Given that, we consider a flow to be a graph. 

Also, the graphs allow us to have a representation that 

gathers all the necessary information to enumerate the 

sketches, such as the neighborhood of each node, which 

expression is associated to the node, among others. 

Therefore, in this section, when we refer to a flow, we refer 

to its structure as a graph. We consider the size of a flow to 

be the number of nodes of the corresponding graph. Figure 

4.3 shows the sketches that would be generated for a fixed 

size of 5. Given the desired size of the flow, the enumerator 

 
Figure 4.3: Enumeration of sketches given the desired 

size of the flow. 

 
Figure 4.4: Overview of the PUFS synthesis process. 

 

follows a recursive approach conditioned by the current size 

of the flow and the desired final size. We consider 5 

possibilities, that correspond to when there are 0, 1, 2, 3 or 

more nodes away from reaching the desired flow size. 

At each step of the recursion we check if there are If and 

non-If free nodes. Free nodes correspond to nodes which 

have no outgoing edges. We consider non-If free nodes to 

be nodes of type Start or Assign that have no outgoing 

edges and If free nodes to be If nodes with at most one 

outgoing edge or none, since If nodes must have 2 outgoing 

edges corresponding to the ”True” and ”False” edges.  

At each new recursive step we check how many nodes are 

missing in the current graph in order to achieve the desired 

size. Then, based on the size of the current graph and the 

corresponding free nodes we add the possible nodes among 

Assign, If and End nodes. At the end of each step a new 

recursion begins using the updated graphs. 

4.3 Sketch Completion 

Once the sketch is generated, its holes must be filled in 

order to obtain a complete flow that corresponds to a 

correct and valid pure function. Within the sketch 

completion process we have two main components: the K-

Tree Enumerator and the Decider. This process is illustrated 

in figure 4.4. 
4.3.1 K-Trees Enumeration 

Once the input file, with the input-output examples, along 

with the DSL are provided, the enumeration of the 

candidate programs takes place. The enumeration of the  



 
 

Figure 4.5: An example AST. 

 

 
Figure 4.6: Example AST of figure as a k-tree. 

 

candidate programs is guided by a sketch, i.e., the sketch is 

the flow’s graph with holes instead of expressions. 

In order to perform the enumeration of candidate programs, 

we need to use a structure that is capable of representing 

every possible program in the DSL. Programs are often 

represented using their Abstract Syntax Tree (AST) 

representation. An Abstract Syntax Tree (AST) is a tree 

representation of the syntactic structure of a program, 

where each internal node represents an operator, and the 

children represent the respective operands. For instance, the 

AST shown in figure 4.5 corresponds to the program 

add(mul(input1; input2); input2). 

K-trees are a popular representation used in enumeration-

based program synthesis due to its ability of representing 

every possible program for a given DSL. Therefore, k-trees 

are the representation used in PUFS. A k-tree is a tree of 

depth d, where every internal node has exactly k children 

and every leaf node is at depth d. For the current DSL 

supported by PUFS, the maximum arity among all DSL 

constructs is 3, meaning every k-tree will have 3 children, 

as shown in Figure 4.6.  

In order to enumerate the possible programs using k-trees, 

the synthesizer encodes the trees as an SMT formula. A 

complete program can be extracted from a model of the 

SMT formula. A model that satisfies that formula 

represents the assignment of a symbol of the given DSL to 

each node in the trees. Within the possible tree encoding 

approaches, we have selected the line-based encoding. In 

the line-based encoding, a program is represented using a 

 
Figure 4.7: Enumeration of k-trees for a given sketch 

with two holes to fill.  

sequence of trees of depth 1, where each tree represents one 

operation of the program, as in an imperative language.  

PUFS uses an adaptation of the line-based encoding 

presented in SQUARES. A program representing a flow 

with Assign nodes only can be seen as a sequence of 

operations, therefore, we want to fill each hole using a k-

tree rather than one single k-tree to represent the whole 

program, as shown in figure 4.7. However, when it comes 

to flows with If nodes that does not apply, and for that same 

reason we use an adaptation of the encoding instead of the 

original one. Furthermore, the trees are enumerated in 

increasing depth until a solution is found or until a timeout 

is reached. 

In the following sections we describe the variables and 

constraints used to encode the line-based. 

 
4.3.2 Line-based Encoding with Conditionals 

When considering flows with Assign nodes only, the 

previous encoding, described in section 3.3, would be 

enough, since a program, with assignment expressions only, 

can be seen as program written in an imperative language 

where each line would be the expression associated to each 

Assign node. However, in the presence of If nodes, the 

structure of our programs is not so straight forward. 

Therefore, in order to synthesize flows with conditional 

expressions we have implemented the following 

constraints. 

Recall that D is the DSL, Prod(D) the set of production 

rules in D and Term(D) the set of terminal symbols in D. 

Furthermore, Types(D) represents the set of types used in D 

and Type(s) the type of symbol s є Prod(D) U Term(D). If s 

є Prod(D), then Type(s) corresponds to the return type of 

production rule s. 

Consider Σ the set of symbols used in the program. Besides 

the production rules and terminal symbols, there is one 



additional symbol ret for each line in the program. Let Ret 

= {reti : 1≤ i≤ n} represent the set of return symbols in the 

program, then Σ = Prod(D) U Term(D) U Ret. 

Furthermore, each symbol is assigned a unique positive 

identifier. Let id : Σ→ N0 be a one-to-one mapping function 

that maps each symbol in Σ to a unique positive identifier 

and tid : Types(D) → N0 be a one-to-one mapping function 

that maps each symbol type to a unique positive identifier. 

Finally, since some operations in the DSL have a smaller 

arity than k, the empty symbol є is introduced, so that every 

leaf node has an assigned symbol. We assume id(є) = 0. 

 

Encoding variables. Consider a sketch with n holes to fill, 

where the maximum arity of the operators used in the 

expressions is k, and each hole will be filled using a line, 

we have the following variables: 

• _ O = {opi : 1 ≤  i  ≤ n} : each variable opi 

represents the production rule used in line i. 

• _ T = {ti : 1 ≤  i  ≤ n} :  each variable ti represents 

the return type of the expression in line i. 

• _ A = {aij : 1 ≤  i ≤ n, 1 ≤ j ≤ k} :: each variable aij 

represents the symbol corresponding to argument j 

in line i. 

To ensure the enumerated programs are well-typed we need 

to add the following constraints. 
 

Operations constraints. The operations in each line must 

be production rules. 

 

 
If a node i corresponds to an If node, then the line used to 

fill that node’s hole must be a production rule for which the 

return type is Boolean. Let BooleanProd(D) be the set of 

such production rules that appear in the DSL D, and 

HoleType(i) the node type of hole i. 

 
The return type of each line is the return type of its 

production rule. 

 
Given a sketch with more than one hole to fill, the 

arguments of an operation i used in a hole must be either 

terminal symbols or return symbols from previous holes. 

 

Arguments. Given a sketch with more than one hole to fill, 

the arguments of an operation i used in a hole must be 

either terminal symbols or return symbols from previous 

holes. 

However, if the sketch to be completed has If nodes, there 

will be more than a single execution path, so, the results of 

an operation can only be used within the following 

operations of the same execution branch. Therefore, we 

have the following constraint. Let PreviousHoles(i) be the 

set of lines used in previous holes from the same execution 

path as node i, excluding lines that are used to fill If nodes. 

 
The arguments of an operation i must have the same types 

as the parameters of the production rule used in the 

operation. Let Type(p, j) be the type of parameter j of 

production rule p, where p є Prod(D). If j > arity(p) then 

T(p, j) = є. Hence, there are the following constraints when 

a return symbol is used as an argument of an operation: 

 
A terminal symbol t є Term(D) cannot be used as argument 

j of an operation i if it does not have the correct type: 

 
The arity of an operation i can be smaller than k, in that 

case, the empty symbol є is assigned to the arguments 

above the productions arity. 

 
Output. Let Type(out) be the type of the program’s output 

and Pout є Prod(D) be the subset of production rules which 

return type equal to Type(out), i.e., Pout = {p є Prod(D) : 

Type(p) = Type(out)}. Given that a flow can have multiple 

nodes pointing to an End node, there is more than one 

possible output result. Consider L the set of all lines 

corresponding to nodes that point to an End node. Since the 

last line of a program corresponds to the program’s output, 

the operation of each one of the lines in L must be one the 

productions in Pout. 

 
Input. Let I be the set of symbols provided as input by the 

user. Each input must be used at least once: 

 
Lines once or more times. We are interested in 

enumerating programs where the result of an operation can 

be used in the following operations 1 or more times. Hence, 

we have the following constraint. 

 
 
4.3.1 Decider 

Once the sketch is filled with the corresponding expressions 

in each node, the decider evaluates if the resulting program 

satisfies the specification. To perform this evaluation, we 



Table 5.1: Comparison of number of instances solved 

for the different timeout values. 

 
 

 

 
Figure 5.1: Number of instances solved throughout time 

for a timeout of 60 seconds. 

 

developed a flow interpreter, which takes a graph that 

represents a flow and interprets the resulting program using 

the input values to obtain the corresponding outputs of that 

program. If, for every input, the program returns the 

corresponding output from the specification the decider 

considers that a solution was found. Otherwise, a new 

sketch is generated to be filled by the synthesizer. This 

process is repeated until a solution is found or until a time 

limit is reached. 

5. EVALUATION 

The goal is to evaluate how many pure functions PUFS is 

able to synthesize and how quickly. We are also interested 

in evaluating how the quality of the examples affects the 

performance of the synthesizer in terms of run time and 

program quality. Besides performing an evaluation based 

on properties of the examples, we also evaluate if providing 

additional information, such as constants to be used in the 

program, has a significant impact in the performance. 

We developed PUFS on top of the TRINITY [17] synthesis 

framework. The synthesizer is implemented in Python 3.6 

and it uses the Z3 SMT solver [4] with theory of Linear 

Integer Arithmetic to solve the SMT formulas generated 

during the synthesis process. The results presented in this 

section ere obtained using an Intel(R) Core(TM) i5-7300U 

CPU @ 2.60GHz, with 16GB of RAM, running Ubuntu 

18.04 LTS, with time limit of 300 seconds. 

 
5.1 Experimental Results 

We want to evaluate the impact of the number and quality 

of the input-output examples on the performance of our 

synthesizer, in terms of runtime and program quality. 

Additionally, we evaluate the impact of providing constants 

 
 

Figure 5.2: Number of instances solved throughout time 

for a timeout of 120 seconds. 

  

along with the input-output examples. For each instance we 

ran the synthesizer with 5 input-output examples.  

For instances in which the solution is expected to use 

constants we provided the corresponding constants in the 

specification file along with the input-output examples. 

These constants consist of integer, decimal and string 

values. We ran the synthesizer for instances with constants 

and with no constants provided. This is due to the fact that 

the synthesizer is not able to synthesize programs with 

constants for now, so solutions that require constants would 

not be found using the present configuration. 

Table 5.1 shows the results of both approaches in terms of 

the number of instances solved and limit time considered.  

We consider an instance solved it the synthesized program 

satisfies the input-output examples. However, even though 

it is considered solved it does not mean it is correct, i.e. it 

might not match the intended solution. Matching the user 

intent means that the solution must satisfy the specification 

as well as capturing the user intent (this verification is 

performed manually). 

 
5.2 Discussion 

From the presented results, we can verify that as the 

complexity of the program increases so does the time to 

find solution. As the enumeration process is done in an 

ascending order of size of the sketch, the bigger the sketch 

we want to complete the longer it will take to complete it 

and find a solution that satisfies the specifications. We need 

to take into account that the bigger the size of the program 

we are synthesizing, the longer it will take for the sketch 

completion stage to be completed, due to the fact that the 

number of holes we wish to fill increases the number of 

expressions to be synthesized. 

However, from the comparison between the different 

timeout limits and the number of instances that the 

synthesizer was able to solve during each of those time 

intervals, we can verify that the difference in the time given 

does not have a significant impact on the number of 

instances solved, especially when using constants. 

Regarding the use of constants, from plot 5.1 and table 5.1, 

we can verify that the use of constants has a significant 

impact in the number of solved instances, which is more 



evident in instances solved under 1 minute. This impact 

would be expected due to the fact that the synthesizer does 

not enumerate candidate programs containing constants, 

unless these are provided by the user. However, the 

addition of constants also increases the time it takes to find 

a solution, due to the fact that more candidate programs are 

enumerated. Which would explain the results for the 

timeout of 2 minutes, illustrated in 5.2, where we verify that 

the number of solved instances without constants is almost 

the same as when providing the constants. For this 

particular case, it is important to evaluate if the trade-off 

between the additional time spent enumerating more 

programs, compensates by finding a solution in a 

reasonable time. 

Another aspect to have in consideration is the number of 

solutions that do not correspond to the intended one. The 

use of constants, especially when used in conditional 

expressions to limit a range of values, can lead to solutions 

that do not match the expected one, if the provided input-

output examples do not cover the limits of that range. 

 

6. CONCLUSIONS & FUTURE WORK 

In this thesis, we tackle the problem of synthesizing pure 

functions from examples in the OutSystems platform. We 

focus on functions that manipulate integers, decimals, text 

and Booleans. The OutSystems platform main goal is to 

provide an easier and faster experience in development and 

integration of web and mobile applications. This platform 

gives users, with no programming background, a tool that 

allows them to develop an application with no need for 

specific knowledge, and also provides a faster and 

automated approach to users with more specialized 

knowledge. Therefore, it is in our interest to provide a 

simple approach for the user to be able to generate the pure 

functions with only a small number of examples in just one 

click. These types of functions come across very often, in 

the form of data wrangling tasks, among others. Having 

such a repetitive type of task might become tedious and add 

more complexity to the overall tasks, which leads to a need 

of automating this type of functions. In this dissertation we 

presented a novel approach to synthesize pure functions in 

the form of flows in the OutSystems platform, from a set of 

input-output examples. We survey the state of the art in 

program synthesis and implemented PUFS, a PBE-based 

pure function synthesizer. The synthesizer employs the use 

of sketches as the underlying structure of our programs and 

enumerative search, where SMT is used to search the 

program space. We tested PUFS in a set of real-world 

examples of pure functions developed in the OutSystems 

platform, from which the results of our experiments 

revealed we are able to synthesize 33% of the benchmarks 

within less than a minute. However, the results also 

revealed that in a significant number of examples we were 

not able to find a solution within a limited amount of time 

due to the dimension of the program space or due to an 

incomplete specification. Given the experimental results, 

we believe the current solution could benefit from some 

pruning techniques, in order to reduce the search space and 

possibly overcome the time limitation to find a solution. It 

would also be interesting to use a ranking technique as an 

ambiguity resolution technique in order to guide the 

synthesizer into finding a program that is more likely to 

lead to a solution that satisfies both the specification and 

corresponds to the user intent. Moreover, it is important to 

explore if this approach scales if the DSL was to be 

extended, given that it would be interesting to extend the 

current DSL to support more data types and more functions. 

Besides the DSL it would be particularly interesting to 

support other type of nodes that allow other types of 

operations. 
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